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Abstract— In soft robotics, developing an effective way of
robot-environment interaction is a challenging task due to the
soft nature of the material that makes the manipulator. This
paper demonstrates a vision-based approach to configure a two-
segment soft continuum robot manipulator into an user-defined
configuration and interact with unknown objects on plane. The
soft robot manipulator actuated by cable-driven mechanism,
is composed of two cascade continuum segments which are
made from poly-dimethyl-siloxane (PDMS). The overall robot
configuration can be determined in a point-wise manner on
image plane provided by an eye-to-hand system. One can define
the end-effectors’ location on the visual system to re-shape
the manipulator. The visual servoing fashion allows the robot
to optimize its gesture to its best fit without developing any
complicated model. Experiments on prototype indicate that
the proposed model-free approach can be well employed, even
when the manipulator is bearing a payload. By adaptively
adjusting the manipulator’s stiffness to a quasi-deadlock status,
the payload capacity is up to nearly 6 times of the manipulator’s
mass itself.

I. INTRODUCTION

Continuum robots are of interest to roboticists in recent
decades since its very early appearance [1] [2]. Theoretically,
a continuum robot is characterized as a dexterous robot
manipulator with infinite degrees of freedom (DOFs). The
inherent dexterity empowers the continuum robots to work in
sinuous and multi-constrained surroundings that conventional
robot arms are struggling to set foot in. In recent years,
a trend of developing continuum robot body using soft
material is in vogue. The softness gifts high deformability
and energy-absorbing properties to the continuum robot [3].
A great number of foreseeable applications can be innovated
by utilizing the soft continuum robots, whereas minimally
invasive surgery (MIS) is one of the most promising fields
[4]. In MIS, the robot manipulator is designed to go through
millimeter-grade incision(s) to provide online diagnosis and
in situ treatment via its dexterous manipulator [5]. Before
the continuum robot can be employed in MIS, it has to meet
several prorequisition which are essential for human-robot
interaction safety, such as the precise manipulation in the
fragile intra-cavity (or organs) environment and interactive
adaption to the external disturbance. The compliant nature
of soft continuum robot provides an option to tackle those
challenges.
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Fig. 1. Prototype of a two-segment soft continuum manipulator.

The precision control of a soft robot requires a reliable
approach of perceiving its real-time state. However, it comes
at the cost of developing complicated mathematical exact
model in terms of controlling the robot tip/shape [6], and
it can be even more difficult when it is in the presence of
unknown disturbances. With prior knowledge to the dynamic
model of the robot, a soft manipulator can interact with
environment based on the haptic feedback from its sensors.
Thus far, various on-board sensors have been utilized [7],
including an optical fiber Bragg grating (FBG) which is
capable of shape reconstruction and haptic sensing [8] [9].
A resistive transducer which makes use of metal liquid
called eutectic gallium–indium (eGaIn) has been embedded
into the silicone to realize deformation perception and force
detection [10]. Case et al. demonstrate a model for multi-
segment proprioceptive continuum robot that wrapped with
pneumatic jacket [11]. The aforementioned robot-sensor inte-
gration endows the soft robot with proprioception in a costly
way because of the built-in sensing, and the complicated
fabrication makes the robot with on-board sensing rather
delicate. None of these demonstrate corrections for external
loads.

Alternatively, vision-based sensing can be an inexpensive
approach for the perception of soft robot system. Wang et al.
develop an eye-in-hand platform to servo the soft manipu-
lator in constrained environment with an adaptive controller
[12]. Fang et al. propose a machine-learning approach to
control an eye-in-hand soft robot [13]. The motion mapping
matrices can be updated online when an external load is
added to the robot and the robot can still maintain the
desired shape. Similarly, Kudryavtsev et al. design a visual
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servoing controller for an eye-in-hand concentric tube robot
[14]. However, the operating principle is different from soft
robots as the bending angle is one of the control parameters.
Wang et al. propose an eye-to-hand method, in which the
camera is mounted at the manipulator base internally [15].
A pre-trained convolutional neural network is implemented
to reconstruct the manipulator shape which is based on
the pre-patterned color inside the hollow structure. Bruder
et al. propose a predictive approach for positioning a soft
robot to follow a path [16]. While finding the control inputs
is an non-convex optimization problem, in their work, the
path is first transformed to the lifted space and visual data
are used to model predictive controller design. While soft
robots today with higher power outputs are able to perform
more sophisticated tasks, little work has yet been done on
compensating soft robot subjected to external loads.

As for as soft-bodied manipulator, it should be acknowl-
edged that the elongation and deformation of the robot
material which is not necessarily to be linear are to be pre-
parameterized in the perfection of modeling, and it can be
more complicated in the presence of interactive environment.
It motivates people to adhere endless on-board sensors onto
the robot resulting a massive computation. It is a challenging
task to build an analytical representation while the highly-
deformable manipulator is encounter with obstacle or exter-
nal forces. Even if within the same shape, the stiffness of
the soft manipulator can be a variate subjected to different
tasks.

In this paper, we develop a vision-based method to servo
a two-segment soft continuum manipulator to a specific
gesture as much as possible in a planar domain without on-
board sensing. We are interested in shaping a two-segment
soft robot into a user-defined posture regardless of the
external payload. The soft-bodied robot is mainly made
from elastomer and 3D-printed material. The soft robot we
developed follows a classic cable-driven mechanism [12]
[17], in which manipulator can be actuated via changing
the actuation length of cables (Fig. 1). Two segments are
assembly in series. Colored labels are attached along the
manipulator isometrically as features for visual detection.
The robot status will be updated using an image-based
sensing technique. Instantaneous measurement attained from
the visual feedback is treated as the new input to the
robot control loop. On top of that, the soft robot can also
passively adjust its stiffness to reach the assigned posture
even when it is bearing a payload nearly six times of the
manipulator’s mass. The proposed approach is competent of
posing the two-segment soft robot into different shapes with
environment interaction. The approach may help to explore
the work-ability of miniaturized soft-bodied robot in complex
environment.

The rest of this paper is structured as follows. Section II
introduces the visual servoing method and the control scheme
for a 2-segment manipulator. Section III demonstrates the
prototyping of the soft robot and the experimental setup.
Experiment results are shown in Section IV. And Section
V summarizes the work.

II. METHOD

In this paper, we implement the image-based visual servo-
ing (IBVS) to control a two-segment soft robot manipulator.
Since we only use a stationary monocular vision, the robot is
manipulated in 2D although the prototype is capable of 3D
(6-DOF) motion. The camera which is fixed with respect
to the global reference frame observes the manipulator’s
motion. Error is computed directly on the values of the robot
features extracted from the image plane without reconstruct-
ing its configuration. The robot shall move accordingly so
as to minimize the error between the current values and the
desire values until it reaches the threshold, i.e., to regulate
the the error vector e = s− s∗ to minimum, where s is the
visual feature coordinate, and s∗ is the goal feature [18].

A. Visual Servoing Control of Two-Segment Soft Robot

The end-effector position x ∈ Rn of a cable-driven soft
manipulator can be controlled by giving a set of cable
actuation as inputs q ∈ Rm, such that

x = f (q) . (1)

The manipulator velocity can be attained by taking the time
derivative of Eq. (1) as

ẋ ≈ Jq̇ (2)

where J ∈ Rm×n is the Jacobian matrix that linearly
estimate the instantaneous change of end-effector in response
to the actuation. The Jacobian matrix is described as

J =

[
∂x>

∂q1
...

∂x>

∂qm

]
. (3)

A model-free visual servoing controller requires an initial
estimation of the Jacobian matrix (J0), which can be ob-
tained by incrementally actuating each input and measuring
the position displacement of the end-effector in image plane
accordingly. As the manipulator moves, the Jacobian will be
constantly updated based on the visual feedback regardless
of its environment. At time step t, the incremental input ∆qt

is yielded by

∆qt = J†t∆xd (4)

where J†t is the Moore–Penrose pseudo-inverse of Jacobian
matrix at time step t as

(
J>t Jt

)−1
J>t , and ∆xd denotes the

desired end-effector move at time step t given by the refer-
ence position and current position, i.e., ∆xd = (xr − xt).
In image plane, we consider the manipulator motion plane
is parallel to the camera plane, such that, st = sxt

. The
end-effector position at time step t is xt = [ut,vt]

>. The
reference position of end-effector is xr = [ur,vr]>, which
is related to the current position xt and goal position xg =
[ug,vg]> as[

ur

vr

]
=

[
ut

vt

]
+

α

‖xg − xt‖

[
ug − ut

vg − vt

]
(5)
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where α is the damping unit. The online continuous estima-
tion of Jacobian at time step Jt+1 can be formulated as

minimize
Jt+1

‖∆Jt‖F

subject to ∆xt = Jt+1∆qt

Jt+1 = Jt + η∆Jt

(6)

where ‖·‖F is the Frobenius norm to be minimized, and
η ∈ [0, 1] is the buffer constant for Jacobian update.

Summarizing (4)-(6), a position-based proportional track-
ing control law can be designed as

qt+1 ← qt + λ
(
J†t+1∆xd

)
(7)

where λ is the proportional gain to ensure a smooth motion.
For one single soft segment, the controller frameworks is
shown in Fig. 2.
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Fig. 2. Controller architecture of a single soft segment.

Two-segment soft continuum manipulator is articulating
two soft modules, while the cables of the distal segment
are coupled in the distal one. Ideally, regardless of the
cable-channel friction, if the soft module is stiff enough
when being actuated, each segment can be independently
controlled without considering coupling. In fact, by defining
goal positions for each module (i.e, the proximal goal point
xg1 and the distal goal point xg2), it is not necessary for
the robot to deadlock its segmental gesture to reach the
goal points. Therefore, the motion of the distal segment will
deviate the previous segment (Fig. 3).

In order to control both end-effectors to reach their desired
goal position, an iterative method can be used. A soft mod-
ule can become stiffer by proportionally actuating all their
cables. As shown in Fig. 4, the visual feedback constantly
tracks the module end-effectors. Each segment is controlled
as schemed in Fig. 2, until the norm of current position and
goal position reach the threshold of ε pixels. It shall be noted
that the definition of xg1 happens before that of xg2 to ensure
a unique solution.

Following aforementioned approach, the soft manipulator
is capable of adapting the unknown payload by adjusting the
modular stiffness in due course. Experiment will be shown
in the next section.

 1: Reach the proximal goal

2: Reach the distal goal

Fig. 3. The actuation of distal end-effector (gray) will deviate the proximal
end-effector (yellow) from its reached position, since and cables of the distal
are couple in the proximal one, and the proximal module is soft.
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Fig. 4. Control scheme for 2-segment soft manipulator.

III. PROTOTYPE AND EXPERIMENT

A. Prototype Design and Experimental Setup

The soft continuum manipulator in this paper is composed
of two independent segments. The distal segment has 3
concentrically distributed channels, while the proximal seg-
ment has 6. Each soft segment is 50 mm in length, with
a diameter of 9 mm. The fabrication process is outlined
as in Fig. 5. For the proximal segment, 6 straight Nitinol
rods are assembled into the respective holes of a 3D printed
end disk (Ø8.5mm) which is made from blue polylactic acid
(PLA). A 3D printed mold (PLA) is employed to cast the
cylindrical shape segment. Poly-dimethyl-siloxane (PDMS)
base and its curing agent (SYLGARD 184, Dow Corning,
MI, USA) are pre-mixed with a mass ratio of 10:1 according
to the product description. After the degassing procedure,
the liquid mixture is injected into the mold. The filled mold
goes through a 85°C water-bath process to cure for 2 hours
before it can be disassembled. Dyneema wires (Royal DSM,
Netherlands) with a diameter of 0.4 mm are then run through
the corresponding channel, and knots are tied at the end
disk side. The distal segment is made following the similar
method, but with longer wires which are going through the
unassigned channels in the proximal segment. The total mass
of the two soft segments is approx. 8 g.

The experiment platform setup is shown in Fig. 6. In the
experiment, monocular vision is employed for the planar
manipulator motion tracking. A USB camera (Microsoft®
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a. b. c.

d. e. f.

Fig. 5. The manufacturing procedure of a two-segment soft continuum ma-
nipulator prototype. (a) components assembly (b) pre-mixed and degassed
PDMS mixture injection (c) disassembly (d) single soft continuum body (e)
Dyneema wires guiding (f) prototype of final assembly.

soft manipulator

USB camera

Actuation Box

Connected to PC

pc

act

1

manipulator

act

6

cam

1

cam

2

Fig. 6. Left: Experiment setup. The servo motors are installed on a two-
story 3D printed box in a circular pattern with an angle of 120° to each
other. Right: System diagram.

LifeCam Cinema, WA, USA) is used, and the streaming
format is 640×480 pixel in 30 fps. The experiment plat-
form is controlled via a 64-bit PC with an 2.20GHz Intel
Core i7-8750H CPU and 16GB RAM. The features of the
manipulator are the proximal and distal end-effector, which
are distinguished by blue PLA. The middle point of each
segment is also wrapped by a thin layer of blue PLA ring
as marker to visualize the moves in image. The cables are
tied to Dynamixel XM430 servo motors (ROBOTIS Co.,Ltd.,
Seoul, Korea), which are controlled by using the product
bulit-in library functions on MATLAB.

B. Visual Tracking of Features

The visual tracking system is implemented in MATLAB
with Image Acquisition Toolbox and Image Processing Tool-
box. The vision background is set as a white board. While
streaming, each frame is captured as an RGB image. As
shown in Fig. 7, the RGB image is transformed into gray
image and binarized before the blue elements are subtracted.
To improve the detection accuracy, basic morphological
operations are conducted for each frame, such as pixel
dilation and erosion. We find out the contour centroids of the
outstanding pixels (white clusters in Fig. 7(c)) which outlines

the manipulator shape. Centroids are sorted once five objects
are detected simultaneously. To stabilize the tracking in real-
time video stream, Kanade–Lucas–Tomasi (KLT) tracker is
used to link the registered features in successive frames, so
that a steady tracking can be ensured.

C. Experiment

The goal positions, which are the end-effector position
of proximal (xg1) and distal (xg2) segment, are manually
defined by mouse-click at the beginning of streaming once
the manipulator is recognized. The aim of this experiment
is that we want the manipulator to be reshaped as much as
possible by only two user-defined goal positions. Therefore,
the set goal positions shall be reasonable. To this end,
assuming the soft manipulator is rigid, its end-effectors’
workspace can be roughly considered as a circle whose origin
is the segmental base and the radius as segment length at
its rest state. Such that, the frame-based assisted circles for
both segments will be plotted out on the RGB image (Fig. 8)
to guide the user setting at the beginning. The manipulator
status is constantly updated on the image and is also used
as a visual feedback to the controller. The damping unit is
set as α = 0.1, the buffer constant for Jacobain update is
η = 0.5, and the proportional gain λ = 0.5 (mentioned in
Section II).

However, the proposed assisted circles are only to guide
the user to reasonably define the location of the distal tip
points. It should be acknowledged that the assisted circle
is not initiated as the constant curvature assumption of the
soft manipulator. The feasibility and accuracy of reaching the
user-defined position depends on how far the desired point
deviate from the assisted circle. The accuracy of the tips
approaching the user-defined points is satisfactory within 90
degrees bending for each segment.

IV. RESULT AND DISCUSSION

In this experiment, the pixel threshold is set as ε = 20
pixels, since the user-defined goals are not exactly reachable
in the first place. The total length of the soft manipulator at
rest state in image plane is about 310 pixel, which makes
the final error within 6.5%.

A. Shaping Without Payload

The benefit of a two-segment soft manipulator is that it
can be shaped as an “S” gesture that a single segment manip-
ulator cannot achieve. In this subsection, several manipulator
gesture are tested using the aforementioned model-free visual
servoing method, including the “S” shape, the “C” shape,
and the “J” shape. The intuitive results are shown in Fig. 9.
The result indicates the fact that the actuation of each soft
module affects to the other. The proposed control scheme in
this paper is able to adaptively adjust the stiffness of finished
segment in order to control the other, i.e., to maintain the
proximal end-effector to its goal position as much as possible
(within ε) and manipulator the distal tip at the same time.
From Fig. 9, we can notice that the left side gestures (Fig.
9(a,c)) perform better than those on the right (Fig. 9(b,d)).
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(a) (b) (c) (d) (e)

Fig. 7. Manipulator recognition via feature detection. The manipulator is labeled with three blue markers, while the proximal and distal end-effector (disk)
are embedded inside the PDMS body. The image resolution is 640×480 pixel. (a) RGB image; (b) gray scale image with blue elements are subtracted;
(c) binarized image; (d) centroid assignment based on contour recognition; (e) labeled RGB image.

(a) (b)
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Fig. 8. The end-effector goal positions are mouse-clicked in the image
frame once the manipulator is recognized. Selected goals shall be roughly
near the respective circular line. (a) Defining xg1 = [ug1,vg1]>; (b)
defining xg2 = [ug2,vg2]> based on the xg1.

The chattering in Fig. 9(b,d) is because the manipulator is
designed with 3 cables per segment which allows the robot
to manipulate in 3D, and moving to the opposite planar
side (which is right-hand side in this case) requires the
other two cables to be actuated simultaneously. Therefore,
the doubled force generates an overshoot and triggers an
iterative correction process which performs like chattering.
And also, the reference of final steady state error is the
user-defined points, which are not necessarily a reachable
location. Without specifying a stiffness, the manipulator is
set to be paused when the feature points start to deviate twice
from the current best.

By setting the damping and proportional gain to the con-
troller, the proposed method realizes a steady convergence in
terms of tip error. In most cases, the end-effectors can reach

their steady-state error within several dozens of iteration. The
iteration time depends on the processing speed.

B. Shaping with Payload

The merit of implementing visual servoing control in
a cable-driven soft robot is that, the robot can adapts its
stiffness to the external forces. Constrained by the soft
nature, a soft manipulator shall not able to bend with a
payload out-weights its capacity within the same stiffness.
However, stiffening this soft beam-like structure helps to
enhance the rigidity of the manipulator. In cable-driven soft
robot, the stiffness of the manipulator can be changed by
applying certain amount of force to the cables. The modeling
of actuation and stiffness is rather complicated because of
the non-linearity of the elastomer properties. A model-free
approach allows the manipulator stiffness to be compensated
according to the error which awaited to be minimized. To
this extent, several loading tests are done to evaluate the
manipulator’s capacity of bearing weight. The net weight
of the two-segment continuum soft manipulator (including
PDMS body, 3D-printed blue rings as embedded disks, blue
markers, cables) is 8.2g. Results are shown in Fig. 10.

In Fig. 10(a), the manipulator’s tip is crammed into a 9-
mil bullet casing (inner diameter is 9.03 mm). The task is
to move the object (weight is unknown to the robot) to the
specified goal position xg2 (black dot at the image) rightward
to the manipulator, while keeping the proximal segment still.
The goal position for the proximal segment xg1 is set near
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Fig. 9. Configuring the a two-segment soft manipulator into different gestures. The RGB images show the finalized manipulator status in the real-time
tracking. The second and fifth row give a clearer re-constructed view of the manipulator in pixel axis. The error plots return the iteratively updated positional
error of both end-effectors. The threshold ε is 20 pixels. (a) inverted C-shape; (b) S-shape; (c) inverted S-shape; (d) J-shape;
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Fig. 10. Adaptive re-configuration with different payload. (a) Hitching a
9 mm bullet casing at the distal tip. The mass of the object is 3.8g, which
is over 45% of the manipulator’s weight; (b) suddenly hanging in a clipper
manually while the manipulator is moving toward its goals. The mass of
the object is 11.7g, which is over 140% of the manipulator’s weight; (c) A
aluminum bar with a weight of 47.6g is stuck on the distal segment using
scotch tape. The object mass is 5.8 times over the manipulator itself.

the original place. The error plot shows that the proximal
is able to steady maintain its gesture while manipulating the
distal segment which is loaded with 45% of the manipulator’s
weight. Another case is shown in Fig. 10(b), where an object
that is 140% the weight of the manipulator itself is suddenly
hung on the distal segment. The gray area of the error
chart demonstrates how the sudden intrusion can affect the
distal end-effect position. But the manipulator can still be
stabilized and got its job done. Fig. 10(c) shows the result
of configuring the manipulator while it bears a weight of
47.6g, which is 5.8 times the mass of the manipulator.

V. CONCLUSIONS

In conclusion, this paper presents a vision-based method
to adaptively control a two-segment cable-driven soft con-
tinuum robot manipulator in bi-direction. The controller is
designed on the basis of IBVS method. Two segments can
be steadily controlled by iteratively computing the reference
segmental end-effectors’ position. The soft manipulator can
be shaped into multiple gestures as one can defined in image
plane. The prototyping method of the proposed soft manipu-
lator is given. The employment of PDMS in soft robot makes
the manipulator soft, flexible, and elastic. Since PDMS is an
inexpensive material, which is also nontoxic to human, it has
the potential to be used in surgical continuum robotic tools.

The experiment indicates a satisfactory result in terms of
shape control and payload capacity. The robot is able to carry
a weight which is nearly 6 times of the manipulator’s weight
itself. Since the actuation mechanism of the manipulator (6
inputs) is designed for 3D maneuvering, future works may be
addressed on fix-end (position and orientation) control and
3D visual servoing control using stereo-vision.
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